Augmenting Neural Machine Translation through Round-Trip Training Approach

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum Risk Training for Neural Machine Translation

We propose minimum risk training for end-to-end neural machine translation. Unlike conventional maximum likelihood estimation, minimum risk training is capable of optimizing model parameters directly with respect to evaluation metrics. Experiments on Chinese-English and EnglishFrench translation show that our approach achieves significant improvements over maximum likelihood estimation on a sta...

متن کامل

The Efficacy of Round-trip Translation for MT Evaluation

ound-trip translation (RTT), otherwise known as reverse translation or back-and-forth translation, involves the translation of text from one language to another (the forward translation or FT) and back again (the back translation or BT), e.g., a paragraph written in English can be translated to Spanish, and then, the resulting Spanish text can be translated back to English again. RTT has been u...

متن کامل

Round-trip Translation: What Is It Good For?

This paper considers the popular but questionable technique of ‘round-trip translation’ (RTT) as a means of evaluating free on-line Machine Translation systems. Two experiments are reported, both relating to common requirements of lay-users of MT on the web. In the first we see whether RTT can accurately predict the overall quality of the MT system. In the second, we ask whether RTT can predict...

متن کامل

A machine learning framework for TCP round-trip time estimation

In this paper, we explore a novel approach to end-to-end round-trip time (RTT) estimation using a machine-learning technique known as the experts framework. In our proposal, each of several ‘experts’ guesses a fixed value. The weighted average of these guesses estimates the RTT, with the weights updated after every RTT measurement based on the difference between the estimated and actual RTT. Th...

متن کامل

Neural Name Translation Improves Neural Machine Translation

In order to control computational complexity, neural machine translation (NMT) systems convert all rare words outside the vocabulary into a single unk symbol. Previous solution (Luong et al., 2015) resorts to use multiple numbered unks to learn the correspondence between source and target rare words. However, testing words unseen in the training corpus cannot be handled by this method. And it a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Open Computer Science

سال: 2019

ISSN: 2299-1093

DOI: 10.1515/comp-2019-0019